

STAR IfSAR Collection

M. Lorraine Tighe - Director, NEXTMap 02/24/11

STAR Technology X-HH Band SAR

1998 - 2010

- Penetration at radar wavelengths is a function of many factors (moisture, structure, canopy density, land cover type, slope, incidence angle, position in swath, resolution, post processing).
- This illustration is often accepted to represent signal penetration into the canopy, but is reality

 focusing on the X and
 P bands, penetration is deeper.

Data Acquisition: Study Site

- This initial effort (Red & Blue
 Shapes) in 2010 has a total of ~28
 1° X 1° cells
- Approximately 157,434 km²
 (60,785 mi²) = 8.5% of Alaska
- <5% voids in the data required data acquisition from 5 different look directions.
- Average Vendor Price = \$34.73/km² /.39 mi²
- The data was collected in WGS84 (GPS constellation for navigation). Output products have NAD83 (Vertical) & NAVD88 (Horizontal) datum applied using GEOID09

STAR Data Acquisition: Flight Lines

 Intermap maximizes data collection by using Ultra-Long lines (ULL) which can be in excess of 700 km
 = greater data collection per sortie.

The STAR system is able to adjust its antennae angle while on-line to compensate for drift (from track) caused by winds aloft.

Г	1998 - 201	10
	\sim	
5		
-	- Start	-

Product	Brief Description
DSM	High Resolution DSM with 5 m posts, Alaska Albers 15' X 15' tiles
DTM	High Resolution DTM with 5 m posts, Alaska Albers 15' X 15' tiles
ORI	Contrast-stretched ORI (or similar product) magnitude with 5 m pixels or better, Albers, 15' X 15'
Metadata	FCDC-compliant metadata files and swath locator diagram
Quarter Cells	Resampled edge-matched bare earth quarter cells (30' by 30') in geographic projection at 0.4 arc/second X 0.8 arc/second post spacing in HRTe3 format.
Void Mask	Void mask and a list of ancillary sources to fill voids shall be generated for each surface and resolution
Slope Mask	Slope mask to define accuracy categories and edit criteria
Reports	Monthly progress reports; Certified USO 9001 data-quality report information

Slope Based on DTM

Alaska Cell #:11

- Area of slopes < 10°: 3468km² (62%)
- Area of slopes 10°- 20°:
 1562km² (28%)
- Area of slopes > 20°: 441km² (8%)

Percentage of Void Data

Alaska Cell #:11

- Total land area of 5551 km²
- 1.28% Void (71.58 km² of the cell area is decorrelated)
- None of the 15' tiles exceed a decorrelation value of 5%
- Majority of decorrelation corresponds to the mountain range in this block

N63w146h8	N63w146h7	N63v/146h6	N63v/146h5	N63w146h4	N63w146h3	N63w146h2	N63w146h1
C)	c d)))
N63w146g8	N63w146g7	N63w146g6	N63w146g5	N63w146g4	N63w146g3	N63w146g2	N63w146g1
N63w146f8	N63w146f7	N63w146f6	N63w146f5	N63w146f4	N63w146f3	N63w146f2	N63w146f1
3.3	23	3.9	96	4.4	42	0.0	83
N63w146e8	N63w146e7	N63w146e6	N63w146e5	N63w146e4	N63w146e3	N63w146e2	N63w146e1
N63w146d8	N63w146d7	N63w146d6	N63w146d5	N63w146d4	N63w146d3	N63w146d2	N63w146d1
1.0	05	1.1	34	2.3	28	2.3	24
N63w146c8	N63w146c7	N63w146c6	N63w146c5	N63w146c4	N63w146c3	N63w146c2	N63w146c1
N63w146b8	N63w146b7	N63w146b6	N63w146b5	N63w146b4	N63w146b3	N63w146b2	N63w146b1
0.8	85	0)	6)	1.3	73
N63w146a8	N63w146a7	N63w146a6	N63w146a5	N63w146a4	N63w146a3	N63w146a2	N63w146a1

Vertical Accuracy Assessment Using ICESat

- The vertical accuracy of the DTM is 0.63m RMSE or 1.04m LE90%
- ICESat typically has a 25 cm RMSE (<5cm mean) in bare ground unobstructed areas.

	DSM	DTM
Number of VCPs	228	228
Mean	0.14	0.05
Max +	1.62	1.58
Max -	-1.58	-2.10
Std dev	0.61	0.63
RMSE	0.62	0.63
90 Percentile	1.05	1.04

Slope (degrees)	Alaska Accuracy Requirement 90% Confidence
0-10	3m
10-20	6m
20-30	9m
30+	12m

Data Processing is 3D

- IES allows for fully **interactive** 3D editing of DEMs
- Multiple ancillary data sources can be loaded and manipulated simultaneously

Left Monitor (Stereo)

SDM

Data Processing - Editing Area

Getting to the Bare Ground

- Although not required by contract, Intermap applied the same editing rules to this project as we applied to the lower 48 (③).
- Every posting receives a classification: <u>Water</u>, <u>Transportation</u> or <u>Terrain</u> (Terrain is classified in three groups to assist the edit tools: <u>Bald</u>, <u>NotBald</u> or <u>PreFITS</u>).
 - All Water meeting core specifications will be classified and flattened.
 - Airports are flattened and classified as Transportation.
 - Drainage features are hydro enforced (Hydro-enforcement was applied to the DTMs and DSMs, but not required as part of the project).
 - Obstructed areas (e.g. vegetation) are rebuilt using SSE & ancillary data.
 - Embankments are maintained.
- Tile edges are tied to all surrounding tiles
- Quality control and error checking are critical

Key 1: Terrain Classification

Bare ground classified as **Bald**

Large areas of obstruction classified as **PreFITS**

The editors have special draw tools that allow them to manipulate, change or create mask areas according to the terrain so that the best possible edit is run for each area

Key 2: Breaklines

Key 3: Editing Rule sets: Water Edit Example

Removing Radar Artifacts in the DSM

- Water is flattened
 - Rivers are stepped in 10cm steps
- Radar blunders are removed

Before Editing

After Editing

Areas of Obstruction are removed in the DTM

DSM to DTM

- A DTM is created by removing vegetation and man-made constructs
- A variety of techniques can be used
 - Interpolation
 - DEM substitution and correction

Completed DSM

Completed DTM

Editing Single Line Drain (SLD)

The contours show where the SLD is flowing in the unedited DTM

Actual Path
DTM Path

A breakline must be added so that the contours follow the actual path of the SLD

Single Line Drain (SLD) becomes a breakline

The actual SLD path is determined by checking the ORI

Edited path of SLD

Adding a breakline has corrected the path of the SLD

The contours now follow the actual path of the drain

Handling Obstructed and Void Areas

- The acquisition plan is designed to minimize the percent of void data in the output product.
- We have a fully integrated terrain solution (FITS) that can utilize modified DSM data or ancillary data to fill in voids and to help recalculate the terrain surface beneath vegetation canopies.
- e.g. Before the "Void Infill" process has been automatically run, void areas have an *interpolated* appearance

Terrain Solution

- We use a modified version of our multiple DSM passes or ancillary data to rebuild the DTM in areas of void and obstruction.
- We will use available ancillary data as a last resort.
- e.g. After the "Void Infill" process has been automatically run, the ancillary DEM has a more *natural* appearance

Before Smoothing

Transition area between classifications

Grid-Like pattern is an Ancillary data artifact

Small bumps

After Smoothing

All small artifacts have been removed by smoothing!!

SDMI

SDMI

SDMI

NEX TMap[®]

Questions?

Ltighe@intermap.com

1998 - 2010

nne

With permission from Tom Heinrichs

Intermap Data Collection

30