

GeoSAR IFSAR Processing

Dr. Bert Kampes Kevin Morgan Mark Sanford

www.fugro.com

Snow and Ice Penetration @2:20PM

See Kevin Morgan's presentation, today @2:20PM

12:00 - 1:30	LUNCH	
1:30 - 2:00	Rick Guritz Moderator Evaluation of ALOS PRISM DEM Accuracy Using a LiDAR Reference Rick Guritz, ASF/UAF	
2:00 - 2:20	An Elevation Model for Alaska Using ALOS PRISM Scott Arko, ASF/UAF Grant Cain, Kerri Crowder, Dan Bates, Rick Guritz, Don Atwood, Keith Cunningham	
2:20 - 2:40	Fugro GeoSAR Mapping Technology for Snow and Ice Penetration Kevin Morgan, Fugro EarthData Bert Kampes, Megan Blaskovich, Mark Sanford - Fugro EarthData	
2:40 - 3:00	Alaska Glacier Change Observed with ALOS PRISM and AHAP Imagery Grant Cain, ASF/UAF	
3:00 - 3:30	BREAK	
		400 600 800 Pixels (3m)

Outline

- Project Overview
- LiDAR Comparison
- Deployment Snapshots
- GeoSAR System
- Fairbanks Processed Data
- Conclusions

Project Overview

- Alaska Statewide Digital Mapping Initiative (SDMI)
- Fugro GeoSAR Project Area consists of 14 1°x1° cells between Fairbanks, Mt. McKinley (Denali) and Anchorage
- Data collected in late July 2010
- North-South Mapping Lines
- East-West Cross-Ties (Mosaick)
- Filler Lines to deal with Shadow and Layover based on ray-tracing

Extremely Varying Terrain Type

Product	Description	GeoSAR Observations	
DTM	 Digital Terrain Model Vegetation and Buildings Removed Hydrologically Enforced 	P-band & X-band InterferometryMultiple Looks	
DSM	Digital Surface ModelHydrologically Enforced	X-band InterferometryMultiple Looks	
ORI	 Orthorectified Radar Magnitude Multiple view directions average 	X-band*Multiple Looks	
Masks	Quality MasksHydrology, Voids, Fills, Slopes	P-band & X-band	
Metadata	 Meta Information 	 FDGC compliant 	

*Hi-Res MAG, hydro; P-band MAG, and cross-pol MAG are not a deliverable.

Fugro Internal Quality Assessment

- GeoSAR is equipped with a profiling LiDAR, providing vertical ground control
- 12,628,042 usable LiDAR observations in the Pilot Area, after removing points with heights above the maximum elevation in the Pilot Area (cloud returns)
- LiDAR Points were sub-sampled by a factor 200 to have ~5m spacing between points and filtered for water body returns
- 48,433 LiDAR points remaining with RMSEz = 1.46m (not culled)

East-West LiDAR Profile Comparison

North-South LiDAR Profile Comparison

- Terrain slope ~25°
- Terrain slopes located correctly in GeoSAR DEM
- Differences ~0-4m at the peak

DSM vs. LiDAR Statistics (not culled)

Slope	0°-10°	$10^{\circ} - 20^{\circ}$	$20^{\circ}-30^{\circ}$	30°+	Overall
Number of Points	32,184	10,358	3,856	2,035	48,433
Average (m)	-0.12	0.63	0.98	1.16	0.18
Standard Deviation (m)	1.10	1.55	1.71	3.04	1.45
Minimum difference (m)	-8.04	-17.90	-7.50	-52.88	-52.88
Maximum difference (m)	16.35	11.48	15.96	25.07	25.07
RMSE (m)	1.13	1.64	1.97	3.25	1.46

*Note: For product generation LiDAR points are automatically selected that are believed to be in flat and open, bare-earth, areas (using the terrain slope and 3 LiDAR returns). ~350 points that fulfilled these thresholds were used to determine a single z-bump of the DEM to best fit the average LiDAR elevation at these points.

GeoSAR System Overview

Movie Clip: Acquisition Take Off

- Left Racks X-band
- Right Racks
 P-band
- Two radar operators
- Redundant data recording

Movie Clip: Moving Map Display

- Moving Map display
- Radar Channel Monitoring
- Wing pod Pband antenna

GeoSAR Measurements Systems

Acquisition Redundancy Improves Data Quality

Acquisition Redundancy Improves Data Quality

Orthorectified Radar Imagery

East+West Views Average

GeoSAR Accuracy, Precision and Reliability

- Accuracy (absolute location)
 - Calbration
 - P-Band Measurements through Vegetation
 - LIDAR Ground Control
- Precision (relative error)
 - Airborne Interferometry
 - Multiple-Look Average
- Reliability (the ability to detect errors)
 - Redundantly Recorded Radar Data allows 16 Height Estimations for each Pixel
 - Dual-Sided Coverage

High accuracy, high precision

Fairbanks GeoSAR Data Example

Fairbanks Vegetation X-P ~ Tree Height

X-band – P-band Height

Fairbanks GeoSAR Data Example

Fairbanks Street View Example 2

Conclusions

GeoSAR IFSAR

- Dual-Band: X-band and P-band at the same time
- Dual-Sided: Left and Right looking at the same time
- Single-Pass: Interferometric data at the same time
- LiDAR: Collect Ground Control at the same time

P-band Data

- Provide measurements through vegetation
- P-band penetrates snow and ice: X-band for DTM
- P-band contains information related to topographic features, hydrology, geology, and more

Project Area Processing Well Underway

- RMSE_Z = 1.1m (terrain slopes 0° -10°; 32184 LiDAR points)
- RMSE_Z = 3.3m (terrain slopes $>30^{\circ}$; 2035 LiDAR points)
- The Alaska data show many interesting things that should be applied and explored further!

Thank You

www.fugro.com